FISEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and anticancer evaluation of thiazolyl-chalcones

Hai-Bo Shi a,b, Shi-Jie Zhang a, Qiu-Fu Ge c, Dian-Wu Guo c, Chao-Ming Cai b, Wei-Xiao Hu a,*

- ^a College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, PR China
- ^b Zhejiang Pharmaceutical College, Ningbo 315100, PR China
- ^c Hangzhou Minsheng Pharmaceutical Group Co. Ltd, Hangzhou 310011, PR China

ARTICLE INFO

Article history:
Received 29 July 2010
Revised 4 September 2010
Accepted 8 September 2010
Available online 21 September 2010

Keywords: Thiazole Chalcone Claisen-Schmidt condensation Anticancer

ABSTRACT

Thirty-seven (E)-1-(4-methyl-2-arylaminothiazol-5-yl)-3-arylprop-2-en-1-ones were synthesized via Claisen-Schmidt condensation of 1-(4-methyl-2-(arylamino)thiazol-5-yl)ethanone with the corresponding arylaldehydes. All these thiazolyl-chalcones were characterized and evaluated by MTT assay on human cancer cell lines BGC-823, PC-3, NCI-H460, BEL-7402 in vitro. Compounds **5**, **8**, **26**, **37** and **41** are effective against cancer cell lines with IC₅₀s below 10 μ M. The antitumor activity in ICR mice bearing sarcoma 180 tumors indicates compounds **10** and **41** have moderate in vivo activity with 22–25% tumor-weight inhibition.

© 2010 Elsevier Ltd. All rights reserved.

Molecules that possess sulfur atoms are universal and crucial in living organisms. ¹ Thiazoles are an important kind of compounds containing one sulfur atom. ² These heterocyclic moieties are existed in many natural products and synthetic drugs with a broad spectrum of pharmacological activities, including antibacterial sulfathiazole, ^{3,4} anticonvulsivant riluzole, ⁵ antiparkinsonian talipexole, ⁶ antiviral ritonavir, ⁷ and anticancer dasatinib. ⁸ Chalcones are also an important kind of compounds that are present in edible plants. They are the precursors of flavonoids and essential secondary metabolites in many plants and bacteria. ⁹ Chalcones exhibit a diversity of bioactivities, such as antioxidant, anticancer and anti-inflammatory activities. ^{10–12} Liu found that many piperidinyl chalcones have

promising antiproliferative activities (IC $_{50} \le 5~\mu M$). 10 To date, there were some thiazolyl–chalcones being reported. Patil studied synthesis of arylacrylothiazoles and their antifungal activity, but found none of them active. 13 However, there appears to be little in literature concerning such thiazolyl–chalcones with their anticancer activities. We attempted to investigate that whether introduction of thiazole groups into chalcones could enhance their anticancer activities or not.

In order to find novel thiazolyl–chalcones with high anticancer activities, we designed and synthesized a series of (E)-1-(4-methyl-2-arylaminothiazol-5-yl)-3-arylprop-2-en-1-ones **5–41**, outlined in Scheme 1. *N*-Aryl thioureas **1a**-**h** were prepared by known

Scheme 1. Synthesis of thiazolyl-chalcones. Reagents and conditions: (a) methanol, reflux, 54.2-77.5%; (b) KOH, THF, reflux, 11.8-81.3%.

^{*} Corresponding author. Tel./fax: +86 571 88320557. E-mail address: huyang@mail.hz.zj.cn (W.-X. Hu).

Table 1Synthesis of thiazolyl-chalcones **5–41**

Compds	Substituents		Yield (%)	Mp (°C)	¹ H NMR (CDCl ₃)		HRMS/elemental analysis ^a		
	R ¹	R ²				С	Н	N	
5	3,4-Cl	Н	49.6	213–215	7.79 (d, <i>J</i> = 15.2 Hz, 1H, =CH), 7.63–7.19 (m, 8H, Ar–H), 7.16 (d, <i>J</i> =15.2 Hz, 1H, =CH), 2.75 (s, 3H, CH ₃)	M+H 389.0280 (389.0282)			
6	3,4-Cl	4-Cl	42.5	230–232	7.72 (d, $J = 16$ Hz, 1H, =CH), 7.60 (d, $J = 2.8$ Hz, 1H, Ar-H), 7.41 (d, $J = 8.0$ Hz, 2H, Ar-H), 7.48-7.43 (m, 2H, Ar-H), 7.39 (d, $J = 8.0$ Hz, 2H, Ar-H), 7.12 (d, $J = 15.2$ Hz, 1H, =CH), 2.74 (s, 3H, CH ₃)	M+H 422.9885 (422.9892)			
7	3,4-Cl	4-OCH ₃	64.4	215–217	7.76 (d, $J = 15.2$ Hz, 1H, =CH), 7.58 (d, $J = 2.4$ Hz, 1H, Ar–H), 7.44 (d, $J = 8.8$ Hz, 2H, Ar–H), 7.29–7.24 (m, 2H, Ar–H), 7.05 (d, $J = 15.2$ Hz, 1H, =CH), 6.94 (d, $J = 8.8$ Hz, 2H, Ar–H), 3.85 (s, 3H, OCH ₃), 2.70 (s, 3H, CH ₃)	M+H 419.0385 (419.0388)			
8	3,4-Cl	3-OCH₃	52.5	214–215	7.75 (d, <i>J</i> = 16 Hz, 1H, =CH), 7.60 (s, 1H, Ar-H), 7.49-7.21 (m, 4H, Ar-H), 7.18 (d, <i>J</i> = 15.2 Hz, 1H, =CH), 7.12 (m ^c , 1H, Ar-H), 6.98 (d, <i>J</i> = 7.6 Hz, 1H, Ar-H), 3.87(s, 3H, OCH ₃), 2.75(s, 3H, CH ₃)	M+H 419.0392 (419.0388)			
9	3,4-Cl	3,4-methylenedioxy	45.0	237–239	7.69 (d, J = 16 Hz, 1H, =CH), 7.59 (d, J = 2.5 Hz, 1H, Ar-H), 7.47 (d, J = 9 Hz, 1H, Ar-H), 7.28 (d, J = 3.0 Hz, 1H, Ar-H), 7.12–7.10 (m, 2H, Ar-H), 6.98 (d, J = 15.5 Hz, 1H, =CH), 6.85 (d, J = 8.5 Hz, 1H, Ar-H), 6.04 (s, 2H, CH ₂), 2.72 (s, 3H, CH ₃)	b	` '		
10	3,4-Cl	3,4,5-OCH ₃	32.4	232-234	7.67(d, $J = 15.6$ Hz, 1H, =CH), 7.63 (d, $J = 2.8$ Hz, 1H, Ar-H), 7.46 (d, $J = 9.2$ Hz, 1H, Ar-H), 7.31 (dd, $J_1 = 2.4$ Hz, $J_2 = 2.8$ Hz, 1H, Ar-H), 7.02 (d, $J = 15.2$ Hz, 1H, =CH), 6.82 (s, 2H, Ar-H), 3.92 (s, 6H, $2 \times \text{OCH}_3$), 3.90 (s, 3H, OCH ₃), 2.72 (s, 3H, CH ₃)	55.27 (55.12)	4.11 (4.21)	5.69 (5.84	
11	4-CH ₃	3,4-methylenedioxy	27.8	228-230	7.65 (d, J = 15.5 Hz, 1H, =CH), 7.27-7.23 (m, 4H, Ar-H), 7.09 (d, J = 2.0 Hz, 1H, Ar-H), 7.07 (dd, J ₁ = 1.5 Hz, J ₂ = 1.5 Hz, 1H, Ar-H), 6.96 (d, J = 15.5 Hz, 1H, =CH), 6.82 (d, J = 8.5 Hz, 1H, Ar-H), 6.02 (s, 2H, CH ₂), 2.66 (s, 3H, CH ₃), 2.38 (s, 3H, CH ₃)	66.89 (66.65)	4.57 (4.79)	7.53 (7.40	
12	4-CH ₃	Н	20.0	183–185	7.75 (d, $J = 15.6$ Hz, 1H, =CH), 7.60–7.58 (m, 2H, Ar-H), 7.40–7.39 (m, 3H, Ar-H), 7.25–7.19 (m, 4H, Ar-H), 7.15 (d, $J = 15.2$ Hz, 1H, =CH), 2.71 (s, 3H, CH ₃), 2.40 (s, 3H, CH ₃)	b			
13	4-CH ₃	4-Cl	79.2	213-215	7.68 (d, J = 15.6 Hz, 1H, =CH), 7.52 (d, J = 8.8 Hz, 2H, Ar-H), 7.37 (d, J = 8.4 Hz, 2H, Ar-H), 7.25–7.20 (m, 4H, Ar-H), 7.09 (d, J = 15.6 Hz, 1H, =CH), 2.68 (s, 3H, CH ₃), 2.38 (s, 3H, CH ₃)	b			
14	4-CH ₃	3-OCH₃	47.0	174–176	7.69 (d, J = 15.2 Hz, 1H, =CH), 7.31 (t, J = 8.0 Hz, 1H, Ar-H), 7.24-7.18 (m, 5H, Ar-H), 6.94 (dd, J 1 = 2.0 Hz, J 2 = 1.6 Hz, 1H, Ar-H), 7.11 (d, J = 15.2 Hz, 1H, =CH), 7.09 (m ^c , 1H, Ar-H), 3.85 (s, 3H, OCH ₃), 2.68 (s, 3H, CH ₃), 2.37 (s, 3H, CH ₃)	68.98 (69.20)	5.61 (5.53)	7.74 (7.69	
15	4-CH ₃	2-Cl	27.5	205–206	8.12 (d, $J = 15.6$ Hz, 1H, =CH), 7.66 (dd, $J_1 = 2.0$ Hz, $J_2 = 1.6$ Hz, 1H, Ar-H), 7.43 (dd, $J_1 = 1.6$ Hz, $J_2 = 1.6$ Hz, 1H, Ar-H), 7.33–7.28 (m, 2H, Ar-H), 7.24–7.18 (m, 4H, Ar-H), 7.11 (d, $J = 15.2$ Hz, 1H, =CH), 2.69 (s, 3H, CH ₃), 2.37 (s, 3H, CH ₃)	b			
16	4-CH ₃	3,4,5-OCH ₃	44.4	203-205	7.66 (d, $J = 15.6$ Hz, 1H, =CH), 7.24 (d, $J = 3.2$ Hz, 4H, Ar-H), 7.00 (d, $J = 15.2$ Hz, 1H, =CH), 6.80 (s, 2H, Ar-H), 3.91 (s, 6H, $2 \times OCH_3$), 3.90 (s, 3H, OCH_3), 2.70 (s, 3H, OCH_3), 2.37 (s, 3H, OCH_3)	65.32 (65.07)	5.66 (5.70)	6.74 (6.60	
17	Н	3-OCH ₃	15.1	170–172	7.72 (d, J = 15.6 Hz, 1H, =CH), 7.44 (t, J = 7.8 Hz, 2H, Ar-H), 7.38-7.30 (m, 3H, Ar-H), 7.20 (t, J = 6.8 Hz, 2H, Ar-H), 7.13 (d, J = 15.2 Hz, 1H, =CH), 7.11 (m ^c , 1H, Ar-H), 6.95 (dd, J ₁ = 1.6 Hz, J ₂ = 2.0 Hz, 1H, Ar-H), 3.85 (s, 3H, OCH ₃), 2.70 (s, 3H, CH ₃)	68.60 (68.55)	5.27 (5.18)	7.81 (7.99	
18	Н	Н	31.3	196–197	7.75 (d, J = 15.2 Hz, 1H, =CH), 7.60 (dd, J_1 = 3.2 Hz, J_2 = 2.0 Hz, 2H, Ar-H), 7.45-7.36 (m, 7H, Ar-H), 7.21 (d, J = 7.6 Hz, 1H, Ar-H), 7.16 (d, J = 15.2 Hz, 1H, =CH), 2.71 (s, 3H, CH ₃)	b			
19	Н	2-Cl	13.0	174–176	8.13 (d, J = 15.6 Hz, 1H, =CH), 7.68 (dd, J_1 = 2.0 Hz, J_2 = 2.0 Hz, 1H, Ar-H), 7.46-7.42 (m, 3H, Ar-H), 7.37-7.29 (m, 4H, Ar-H), 7.21 (t, J = 7.4 Hz, 1H, Ar-H), 7.13 (d, J = 16 Hz, 1H, =CH), 2.71 (s, 3H, CH ₃)	b			
20	Н	4-Cl	35.3	200-202	7.69 (d, J = 15.2 Hz, 1H, =CH), 7.52 (d, J = 8.4 Hz, 2H, Ar-H), 7.44 (t, J = 7.8 Hz, 2H, Ar-H), 7.37 (d, J = 8.0 Hz, 4H, Ar-H), 7.21 (t, J = 7.4 Hz, 1H, Ar-H), 7.11 (d, J = 15.6 Hz, 1H, =CH), 2.69 (s, 3H, CH ₃)	b			
21	Н	3,4,5-OCH ₃	22.4	250-252	7.67 (d, J = 15.2 Hz, 1H, =CH), 7.44 (t, J = 8.0 Hz, 2H, Ar-H), 7.37 (d, J = 7.6 Hz, 2H, Ar-H), 7.21 (t, J = 7.4 Hz, 1H, Ar-H), 7.02 (d, J = 15.2 Hz, 1H, =CH), 6.81 (s, 2H, Ar-H), 3.92 (s, 6H, 2×OCH ₃), 3.90 (s, 3H, OCH ₃), 2.72 (s, 3H, CH ₃)	64.51 (64.37)	5.49 (5.40)	6.93 (6.82	
22	2-CH ₃	4-Cl	19.0	204–206	7.67 (d, J = 15.2 Hz, 1H, =CH), 7.54–7.52 (m, 1H, Ar–H), 7.50 (d, J = 8.0 Hz, 2H, Ar–H), 7.36 (d, J = 8.4 Hz, 2H, Ar–H), 7.31 (d, J = 7.6 Hz, 2H, Ar–H), 7.24–7.20 (m, 1H, Ar–H), 7.05 (d, J = 15.6 Hz, 1H, =CH), 2.70 (s, 3H, CH ₃), 2.35 (s, 3H, CH ₃)	65.25 (65.12)	4.79 (4.65)	7.50 (7.59	

23	2-CH ₃	2-Cl	51.6	181-183	8.11 (d, J = 15.6 Hz, 1H, =CH), 7.64 (dd, J_1 = 2.4 Hz, J_2 = 2.4 Hz, 1H, Ar-H), 7.53 (d, J = 8.8 Hz, 1H, Ar-H), 7.42 (dd, J = 8.8 Hz, 1H, Ar-H), 7.53 (d, J = 8.8 Hz, 1H, Ar-H), 7.42 (dd, J = 8.8 Hz, 1H, Ar-H), 7.53 (d, J = 8.8 Hz, 1H, Ar-H), 7.42 (dd, J = 8.8 Hz, 1H, Ar-H), J = 8.8 Hz, 1H, Ar-H), J = 8.8 Hz, 1H, Ar-H), J = 8.8 Hz, 1H, J = 8.8 Hz, J = 8.8	65.20	4.73	7.45
					$J_1 = 2.0 \text{ Hz}, J_2 = 0.8 \text{ Hz}, 1H, Ar-H), 7.33-7.27 \text{ (m, 4H, Ar-H), 7.23-7.20 (m, 1H, Ar-H), 7.07 (d, J = 15.2 \text{ Hz}, 1H, = CH), 1.00 \text{ (m, 2M-1)}$	(65.12)	(4.65)	(7.59)
					2.69 (s, 3H, CH ₃), 2.35 (s, 1H, CH ₃)			
24	$2-CH_3$	3-0CH ₃	16.5	173-176	7.69 (d, J = 15.6 Hz, 1H, =CH), 7.54 (d, J = 8.0 Hz, 1H, Ar-H), 7.34-7.29 (m, 3H, Ar-H), 7.23-7.16 (m, 2H, Ar-H),	69.25	5.71	7.56
					7.09 (d, $J = 15.6$ Hz, 1H, =CH), 7.08 (m ^c , 1H, Ar-H), 6.94 (dd, $J_1 = 2.0$ Hz, $J_2 = 2.8$ Hz, 1H, Ar-H), 3.84 (s, 3H, OCH ₃),	(69.20)	(5.53)	(7.69)
					2.70 (s, 3H, CH ₃), 2.35 (s, 3H, CH ₃)			
25	$2-CH_3$	Н	28.8	194-196	7.72 (d, $J = 15.6$ Hz, 1H, =CH), 7.58-7.53 (m, 3H, Ar-H), 7.38 (t, $J = 3.2$ Hz, 3H, Ar-H), 7.32 (t, $J = 7.2$ Hz, 2H, Ar-H),	71.67	5.69	8.51
					7.23–7.19 (m, 1H, Ar–H), 7.10 (d, $J = 15.6$ Hz, 1H, =CH), 2.68 (s, 3H, CH ₃), 2.35 (s, 3H, CH ₃)	(71.83)	(5.42)	(8.38)
26	2-CH ₃	3,4,5-OCH ₃	28.0	146-148	7.63 (d, $J = 15.6$ Hz, 1H, =CH), 7.54 (d, $J = 7.6$ Hz, 1H, Ar-H), 7.34-7.31 (m, 2H, Ar-H), 7.22 (t, $J = 7.6$ Hz, 1H, Ar-H),	65.23	5.81	6.75
	_				6.95 (d, J = 15.2 Hz, 1H, =CH), 6.78 (s, 2H, Ar-H), 3.90 (s, 6H, OCH ₃), 3.88 (s, 3H, OCH ₃), 2.66 (s, 3H, CH ₃), 2.35 (s,	(65.07)	(5.70)	(6.60)
					3H, CH ₃)	,	(,	()
27	3-CH ₃	3-0CH ₃	30.8	164-166	7.70 (d, $J = 15.6$ Hz, 1H, =CH), 7.32 (t, $J = 7.4$ Hz, 2H, Ar-H), 7.18 (t, $J = 7.0$ Hz, 2H, Ar-H), 7.14–7.10 (m ^c , 2H, Ar-H),	69.25	5.68	7.77
	5				7.13 (d, J = 15.6 Hz, 1H, =CH), 7.02 (d, J = 7.6 Hz, 1H, Ar-H), 6.94 (dd, J ₁ = 2.0 Hz, J ₂ = 2.4 Hz, 1H, Ar-H), 3.85 (s, 3H,	(69.20)	(5.53)	(7.69)
					OCH ₃), 2.70 (s, 3H, CH ₃), 2.40 (s, 3H, CH ₃)	(00.20)	(5.55)	(7.00)
28	3-CH ₃	Н	33.8	173-175	7.76 (d, $J = 15.2$ Hz, 1H, =CH), 7.60 (dd, $J_1 = 3.6$ Hz, $J_2 = 2.0$ Hz, 2H, Ar-H), 7.41 (t, $J = 3.2$ Hz, 3H, Ar-H), 7.34–7.28	71.75	5.60	8.57
20	3 6113		33.0	175 175	(m, 2H, Ar–H), 7.16 (d, $J = 15.6$ Hz, 1H, =CH), 7.16 (m ^c , 2H, Ar–H), 2.72 (s, 3H, CH ₃), 2.41 (s, 3H, CH ₃)	(71.83)	(5.42)	(8.38)
29	3-CH₃	4-Cl	29.3	196-198	7.69 (d, <i>J</i> = 15.6 Hz, 1H, =CH), 7.52 (d, <i>J</i> = 8.8 Hz, 2H, Ar-H), 7.37 (d, <i>J</i> = 8.4 Hz, 2H, Ar-H), 7.31 (t, <i>J</i> = 8.0 Hz, 1H, Ar-	65.28	4.73	7.48
23	3-0113	4-01	23.3	150 150	H), 7.17 (d, <i>J</i> = 8.4 Hz, 1H, Ar-H), 7.14 (m ^c , 2H, Ar-H), 7.11 (d, <i>J</i> = 15.6 Hz, 1H, =CH), 2.70 (s, 3H, CH ₃), 2.40 (s, 3H,	(65.12)	(4.65)	(7.59)
					$(1)_1, 7.17$ $(4)_2 = 0.4112, 111, 71.11, 7.14$ $(111, 211, 71.11)_1, 7.11$ $(4)_3 = 13.0112, 111, -0.11_1, 2.70$ $(5, 511, 0.13)_1, 2.40$ $(5, 511, 0.13)_1, 2.40$	(03.12)	(4.03)	(7.55)
30	3-CH₃	3,4,5-OCH ₃	11.8	190-192	7.66 (d, $J = 15.2$ Hz, 1H, =CH), 7.31 (t, $J = 7.6$ Hz, 1H, Ar-H), 7.18 (d, $J = 8.8$ Hz, 1H, Ar-H), 7.14 (s, 1H, Ar-H), 7.03	65.19	5.87	6.71
30	3-0113	J,4,J-0CH3	11.0	130-132	$(m^{c}, 1H, Ar-H), 7.02 (d, J = 14.8 Hz, 1H, =CH), 6.81 (s, 2H, Ar-H), 3.91 (s, 6H, 2×OCH3), 3.90 (s, 3H, OCH3), 2.70 (s, 2+3.2 Hz, 1H, 3+3.2 Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1Hz, 1Hz, $	(65.07)	(5.70)	(6.60)
					3H, CH ₃), 2.40 (s, 3H, CH ₃)	(03.07)	(3.70)	(0.00)
31	3-CH₃	2-Cl	45.8	174-176	8.12 (d, <i>J</i> = 15.6 Hz, 1H, =CH), 7.68–7.66 (m, 1H, Ar–H), 7.44–7.42 (m, 1H, Ar–H), 7.33–7.29 (m, 3H, Ar–H), 7.18–	65.30	4.53	7.44
31	J-C113	2-CI	43.0	174-170	7.16 (m ^c , 2H, Ar-H), 7.13 (d, $J = 15.2$ Hz, 1H, =CH), 7.01 (d, $J = 7.2$ Hz, 1H, Ar-H), 2.69 (s, 3H, CH ₃), 2.40 (s, 3H, CH ₃)	(65.12)	(4.65)	(7.59)
32	4-Cl	Н	38.8	199-202	7.16 (III , 2H, AI-H), 7.15 (U, $J = 15.2$ Hz, 1H, —CH), 7.61 (U, $J = 7.2$ Hz, 1H, AI-H), 7.41 (U, $J_1 = 3.0$ Hz, $J_2 = 3.2$ Hz, 4H, Ar-H), 7.41 (U, $J_1 = 3.0$ Hz, $J_2 = 3.2$ Hz, 4H, Ar-H), 7.41 (U, $J_1 = 3.0$ Hz, $J_2 = 3.2$ Hz, 4H, Ar-H), 7.41 (U, $J_1 = 3.0$ Hz, $J_2 = 3.0$ Hz, 4H, Ar-H), 7.41 (U, $J_1 = 3.0$ Hz, 4	(65.12) b	(4.03)	(7.59)
32	4-Ci	п	30.0	199-202	1.5	D		
33	4 Cl	2 0011	40.0	100 102	H), $7.38-7.33$ (m, $3H$, $Ar-H$), 7.15 (d, $J = 15.2$ Hz, $1H$, $=$ CH), 2.71 (s, $3H$, CH_3)	62.60	4.00	7.45
33	4-Cl	3-OCH₃	48.8	190–192	7.71 (d, <i>J</i> = 15.2 Hz, 1H, =CH), 7.40–7.31 (m, 5H, Ar–H), 7.19 (d, <i>J</i> = 7.6 Hz, 1H, Ar–H), 7.12 (d, <i>J</i> = 15.2 Hz, 1H,	62.60	4.82	7.45
24	4 Cl	4-Cl	40.0	242 244	=CH), 7.10 (m ^c , 1H, Ar-H), 6.96 (dd, J_1 = 2.0 Hz, J_2 = 2.4 Hz, 1H, Ar-H), 3.85 (s, 3H, OCH ₃), 2.70 (s, 3H, CH ₃)	(62.41)	(4.45)	(7.28)
34	4-Cl	4-CI	40.9	242-244	7.70 (d, $J = 15.6$ Hz, 1H, =CH), 7.53 (d, $J = 8.4$ Hz, 2H, Ar-H), 7.41–7.33 (m, 6H, Ar-H), 7.10 (d, $J = 15.2$ Hz, 1H, CH) 2.70 (e, 2H, CH)	b		
	4.61	2.45.000	44.0	222 225	=CH), 2.70 (s, 3H, CH ₃)	50.05	4.70	C 40
35	4-Cl	3,4,5-OCH ₃	41.9	233–235	7.67 (d, J = 15.6 Hz, 1H, =CH), 7.36 (dd, J ₁ = 8.8 Hz, J ₂ = 8.4 Hz, 4H, Ar-H), 7.01 (d, J = 15.6 Hz, 1H, =CH), 6.81 (s, 2H,	59.25	4.79	6.43
					Ar–H), 3.92 (s, 6H, 2×OCH ₃), 3.90 (s, 3H, OCH ₃), 2.71 (s, 3H, CH ₃)	(59.39)	(4.76)	(6.30)
36	4-Cl	4-OCH ₃	27.0	211–212	7.72 (d, $J = 15.2$ Hz, 1H, =CH), 7.55 (d, $J = 8.4$ Hz, 2H, Ar-H), 7.36 (dd, $J_1 = 9.2$ Hz, $J_2 = 7.2$ Hz, 4H, Ar-H), 7.02 (d,	b		
					J = 15.2 Hz, 1H, =CH), 6.92 (d, J = 8.4 Hz, 2H, Ar-H), 3.85 (s, 3H, OCH ₃), 2.70 (s, 3H, CH ₃)			
37	3-Cl	3-OCH ₃	19.5	188–190	$7.72 \text{ (d, } J = 15.2 \text{ Hz, } 1\text{H, } = \text{CH}), 7.43 \text{ (t, } J = 2.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.36-7.28 \text{ (m, } 3\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.36-7.28 \text{ (m, } 3\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.36-7.28 \text{ (m, } 3\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.36-7.28 \text{ (m, } 3\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.36-7.28 \text{ (m, } 3\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.36-7.28 \text{ (m, } 3\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.36-7.28 \text{ (m, } 3\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.36-7.28 \text{ (m, } 3\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), } 7.20 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H, } Ar-\text{H}), }$	62.34	4.62	7.53
					7.15–7.10 (m ^c , 2H, Ar–H), 7.14 (d, J = 15.6 Hz, 1H, =CH), 6.95 (dd, J_1 = 2.4 Hz, J_2 = 2.4 Hz, 1H, Ar–H), 3.86 (s, 3H,	(62.41)	(4.45)	(7.28)
					OCH ₃), 2.71 (s, 3H, CH ₃)			
38	3-Cl	Н	26.4	210–212	7.76 (d, <i>J</i> = 15.2 Hz, 1H, =CH), 7.62–7.59 (m, 2H, Ar–H), 7.43–7.40 (m, 4H, Ar–H), 7.36–7.28 (m, 2H, Ar–H), 7.16 (d,	64.49	4.41	7.73
					$J = 15.2 \text{ Hz}, 1\text{H}, =\text{CH}), 7.15-7.13 \text{ (m}^c, 1\text{H}, Ar-H), 2.72 \text{ (s, 3H, CH}_3)$	(64.31)	(4.26)	(7.89)
39	3-Cl	4-Cl	13.5	207-209	7.70 (d, J = 15.6 Hz, 1H, =CH), 7.53 (d, J = 8.4 Hz, 2H, Ar-H), 7.43 (t, J = 2.0 Hz, 1H, Ar-H), 7.39-7.27 (m, 4H, Ar-H), 7.70 (m, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2H	58.45	3.74	7.39
					7.16 (m ^c , 1H, Ar–H), 7.12 (d, <i>J</i> = 15.2 Hz, 1H, =CH), 2.71 (s, 3H, CH ₃)	(58.62)	(3.62)	(7.20)
40	3-Cl	3,4,5-OCH ₃	24.7	215-217	7.67 (d, J = 15.2 Hz, 1H, =CH), 7.44 (t, J = 2.0 Hz, 1H, Ar-H), 7.33-7.28 (m, 2H, Ar-H), 7.14 (d, J = 7.6 Hz, 1H, Ar-H), 7.67 (d, J = 15.2 Hz, 1H, Ar-H), 7.67 (d,	59.47	4.91	6.53
					7.03 (d, <i>J</i> = 15.2 Hz, 1H, =CH), 6.81 (s, 2H, Ar-H), 3.92 (s, 6H, 2×OCH ₃), 3.90 (s, 3H, OCH ₃), 2.71 (s, 3H, CH ₃)	(59.39)	(4.76)	(6.30)
41	3-Cl,4-F	$3,4,5-OCH_3$	81.3	241-243	$7.72 \text{ (d, } J = 15.6 \text{ Hz, } 1H, = CH), 7.59 - 7.05 \text{ (m, } 5H, Ar - H), 7.02 \text{ (d, } J = 15.2 \text{ Hz, } 1H, = CH), } 3.99 \text{ (s, } 6H, 2 \times OCH_3), } 3.96 \text{ (s, } 6H, 2 \times OCH_3), } 3.$	57.26	4.64	6.24
					(s, 3H, OCH ₃), 2.79 (s, 3H, CH ₃)	(57.08)	(4.35)	(6.05)

a The data are experimental found by HRMS (APCI) or elemental analysis, and the data in the parentheses are calculated. b Known compounds, see Ref. 13. c Overlapped with =CH signals.

Table 2Anticancer activities against BGC-823, PC-3, NCI-460, BEL-7402 cell lines in vitro^a

Compds	Cancer cell inhibition, IC_{50} (μM)					
	BGC-823	PC-3	NCI-H460	BEL-7402		
5	10.64	7.99	22.67	21.54		
6	22.69	>25	>25	>25		
7	>25	>25	>25	>25		
8	8.35	10.10	20.07	>25		
9	>25	>25	>25	>25		
10	>25	19.33	>25	>25		
11	>25	>25	>25	>25		
12	>25	>25	>25	>25		
13	>25	>25	>25	>25		
14	>25	>25	>25	>25		
15	>25	>25	>25	>25		
16	>25	>25	>25	>25		
17	14.29	>25	>25	>25		
18	19.53	>25	>25	>25		
19	22.76	>25	>25	>25		
20	>25	>25	>25	>25		
21	>25	>25	>25	>25		
22	>25	>25	>25	>25		
23	>25	>25	>25	>25		
24	>25	>25	>25	>25		
25	>25	>25	>25	>25		
26	5.40	>25	6.32	10.28		
27	>25	>25	>25	>25		
28	13.62	11.68	21.83	>25		
29	>25	>25	>25	>25		
30	17.22	>25	19.83	>25		
31	24.15	22.17	>25	>25		
32	>25	24.60	>25	>25		
33	>25	>25	>25	>25		
34	>25	>25	>25	>25		
35	>25	>25	22.00	>25		
36	>25	>25	>25	>25		
37	nt	>25	>25	>25		
38	>25	>25	>25	>25		
39	>25	>25	>25	>25		
40	11.59	>25	>25	13.97		
41	9.70	nt	6.31	nt		
DDP	21.43	19.06	2.57	17.90		

^a Values presented are means of three experiments; nt = not tested.

methods in high yields.^{14,15} 3-Chloropentane-2,4-dione **2** was prepared by acetylacetone and NCS (*N*-chlorosuccinimide) refluxing in carbon tetrachloride. The aminothiazoles **3a**–**h** were prepared by thioureas **1a**–**h** and **2** refluxing in methanol with 54.2–77.5% yields.¹⁶ The desired thiazolyl–chalcones **5–41** were obtained by aminothiazoles **3a**–**h** condensed with the corresponding arylaldehydes **4** catalyzed by potassium hydroxide in refluxing THF.¹⁷ The structures of compounds **5–41** were confirmed by IR, ¹H NMR, MS, HRMS or elemental analysis, and the results were summarized in Table 1. The configuration of compounds **5–41** is of the *trans* form, as the coupling constant of two protons on vinyl bond is above 15.0 Hz. For example, in ¹H NMR spectrum of compound **5**, there are two doublet peaks at 7.79 and 7.16 ppm with coupling constant *J* = 15.2 Hz.

All thiazolyl-chalcones **5–41** were evaluated by MTT assay on growth of human gastric cancer BGC-823, human prostate carcinoma PC-3, human lung carcinoma NCI-H460, hepatocellular carcinoma BEL-7402 cell lines. Cisplatin (DDP) was introduced as a positive control in the assay. The results were summarized in Table 2.

When testing in high concentration at $100 \,\mu g/mL$, many thiazolyl–chalcones with low solubility were precipitated out partially that influenced the precision of MTT assay and the inhibition rates for most compounds exceeded 80% observed by microscope. From Table 2, some preliminary structure–activity relationships concerning the effect of substituents R^1 and R^2 could be drawn. Comparing the results of compounds **5–10** with the same R^1 sub-

Table 3Antitumor efficacy of selected compounds **10** and **41** against S180 xenograft in mice^a

Groups	Dose (mg/kg)	Ad.	No. animals ^b	TW (g) ^c	TWI (%) ^d
Control	_	Ip	10	2.52 ± 0.80	_
CTX	100	Ip	8	$0.21 \pm 0.05^*$	91.68
10	25	Ip	8	2.64 ± 0.70	_
10	50	Ip	8	1.89 ± 0.37	25.15
41	25	Ip	8	1.94 ± 0.74	22.97
41	50	Ip	8	1.95 ± 0.37	22.61

- * p <0.01, compared to control.
 - ^a Values presented are means ± SD. Statistical analysis: student *t*-test.
 - ^b Number of mice tested in the group.
 - ^c Average tumor-weight after drug treatment.
 - ^d Percentage of tumor-weight inhibition versus control group.

stituent ($R^1 = 3,4$ -Cl) but different R^2 , it could be found that compounds **5** ($R^2 = H$) and **8** ($R^2 = 3$ -OCH₃) have better anticancer activities. Moreover, compound **26** ($R^2 = 3,4,5$ -OCH₃) has better activities among compounds **22–26** ($R^1 = 2$ -CH₃), and **28** ($R^2 = H$) has better activities among 27-31 ($R^1 = 3$ -CH₃), and 37 ($R^2 = 3$ - OCH_3) have better activities among **37–40** (R^1 = 3-Cl). Therefore, substituents R² like H, 3-OCH₃, 3,4,5-OCH₃ may be positive to enhance the activities. On the other hand, comparing the activities of compounds 10, 16, 21, 26, 30, 35, 40 and 41, they have the same R^2 (R^2 = 3,4,5-OCH₃) but different R^1 . For prostate carcinoma PC-3 cell lines, compound $10 (R^1 = 3,4-Cl)$ has better activity, and for NCI-H460, BGC-823 and BEL-7402, compound **26** ($R^1 = 2$ -CH₃) has better activities. Comparing the activities of compounds 8, 14, 17, **24**, **27**, **33** and **37**, which have the same R^2 ($R^2 = 3$ -OCH₃), it could be found that compound $8 (R^1 = 3,4-Cl)$ has better activities. Also, comparing the activities of compounds 5, 12, 18, 25, 28, 32 and **38** with the same R^2 ($R^2 = H$), compounds **5** ($R^1 = 3,4$ -Cl) and **28** $(R^1 = 3-CH_3)$ have better activities. So the better substituent R^1 may be 3,4-Cl, 2-CH₃ or 3-CH₃ moieties.

Compounds **10** and **41** were also selected to evaluate their antitumor activity in vivo in ICR mice bearing sarcoma 180 cells. Cytophosphane (CTX) was used as a positive control and physiological saline as a blank control. The results presented in Table 3 showed that compound **10** through intraperitoneal injection (ip) administration at dose of 50 mg/kg, exhibited moderate experimental therapeutic efficacy by 25%, but no tumor inhibition was observed when the dose was decreased to 25 mg/kg. And compound **41** exhibited equivalent antitumor activity by about 23% at doses of 50 or 25 mg/kg. Anatomical observation found that compound **41**

Figure 1. Anatomical observation indicating precipitation of compound **41** and intestinal obstruction in mouse.

precipitated partially in body and led to intestinal obstruction as shown in Figure 1.

In conclusion, we synthesized a series of thiazolyl-chalcones (*E*)-1-(4-methyl-2-arylaminothiazol-5-yl)-3-arylprop-2-en-1-ones and evaluated their activities against several cancer cell lines in vitro, and compounds **10** and **41** were tested antitumor activity in vivo against S180 xenograft in mice. Results showed the idea is true that introduction of thiazole groups into chalcones can improve their anticancer activities and some compounds exhibited potential anticancer activities. Further studies including the modification with solubility-enhancing groups are undertaken.

Acknowledgments

We are grateful for Hangzhou Minsheng Pharmaceutical Group Co. Ltd for drug screening and the Natural Science Foundation of Ningbo City (Grant No. 2009A610185) for financial support.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2010.09.041.

References and notes

- Fontecave, M.; Ollagnier-de-Choudens, S.; Mulliez, E. Chem. Rev. 2003, 103, 2149
- Kleemann, A.; Engel, J.; Kutscher, B.; Reichert, D. Pharmaceutical Substances, 4th ed.; Thieme: Stuttgart, 2001.
- 3. Bharti, S. K.; Nath, G.; Tilak, R.; Singh, S. K. Eur. J. Med. Chem. 2010, 45, 651.
- Gouda, M. A.; Berghot, M. A.; El-Ghani, G. E. A.; Khalil, A. M. Eur. J. Med. Chem. 2010, 45, 1338.
- 5. Medime, E.; Capan, G. II Farmaco **1994**, 49, 449.
- Gillespie, R. J.; Cliffe, I. A.; Dawson, C. E.; Dourish, C. T.; Gaur, S.; Giles, P. R.; Jordan, A. M.; Knight, A. R.; Lawrence, A.; Lerpiniere, J.; Misra, A.; Pratt, R. M.; Todd, R. S.; Upton, R.; Weiss, S. M.; Williamson, D. S. Bioorg. Med. Chem. Lett. 2008, 18, 2920.

- Bell, F. W.; Cantrell, A. S.; Hogberg, M.; Jaskunas, S. R.; Johansson, N. G.; Jordan, C. L.; Kinnick, M. D.; Lind, P.; Morin, J. M.; Noreen, R.; Oberg, B.; Palkowitz, J. A.; Parrish, C. A.; Pranc, P.; Sahlberg, C.; Ternansky, R. J.; Vasileff, R. T.; Vrang, L.; West, S. J.; Zhang, H.; Zhou, X. X. J. Med. Chem. 1995, 38, 4929.
- 8. Cortes, J.; Rousselot, P.; Kim, D. W.; Ritchie, E.; Hamerschlak, N.; Coutre, S.; Hochhaus, A.; Guilhot, F.; Saglio, G.; Apperley, J.; Ottmann, O.; Shah, N.; Erben, P.; Branford, S.; Agarwal, P.; Gollerkeri, A.; Baccarani, M. *Blood* **2007**, *109*, 3207.
- Kim, J. H.; Ryu, H. W.; Shim, J. H.; Park, K. H.; Withers, S. G. ChemBioChem 2009, 10, 2475.
- 10. Liu, X.-L.; Go, M.-L. Bioorg. Med. Chem. 2007, 15, 7021.
- Henmi, K.; Hiwatashi, Y.; Hikita, E.; Toyama, N.; Hirano, T. Biol. Pharm. Bull. 2009, 32, 1109.
- Gacche, R. N.; Dhole, N. A.; Kamble, S. G.; Bandgar, B. P. J. Enzyme Inhib. Med. Chem. 2008, 23, 28.
- 13. Patil, V. H.; Mane, R. A.; Ingle, D. B. Indian J. Chem. 1978, 16B, 1114.
- Liu, B.; Gao, H. Q.; Zhou, X. J. Chemistry (Hua Xue Tong Bao) 1994, 57, 42
- Lin, Y.-F.; Hu, W.-X.; Yang, Z.-Y.; Wang, L.-G. J. Zhejiang Univ. Technol. 2007, 35, 27.
- 16. General procedure for preparation of compounds 3a-h: To a stirred solution of 1-(3,4-dichlorophenyl)thiourea 1a (11.05 g, 50 mmol) in methanol (100 ml) below 25 °C, was added a solution of 3-chloropentane-2,4-dione (6.73 g, 50 mmol) in methanol (15 mL). After addition, the reaction was kept at refluxing to reach completion. After cooling in ice, white solid was precipitated and treated with 5% K₂CO₃ to adjust pH to 7-8. Compound 3a was filtered and crystallized from ethyl acetate, pale yellow crystals, 11.66 g (yield 77.5%), mp: 220-221 °C; IR ν_{max} (KBr)/cm⁻¹: 3270, 3070, 1604, 1587, 1546, 1472, 1362, 1318; ¹H NMR (500 MHz, CDCl₃, TMS) δ: 7.56 (d, *J* = 2.0 Hz, 1H, Ar-H), 7.47 (d, *J* = 8.5 Hz, 1H, Ar-H), 7.24 (dd, *J*₁ = 2.0 Hz, *J*₂ = 8.5 Hz, 1H, Ar-H), 2.65 (s, 3H, CH₃), 2.50 (s, 3H, CH₃CO); EIMS m/z (%): 300 (M*, 80), 285 (100), 257 (12), 218 (7), 186 (6), 172 (7), 86 (13), 71 (9). Compounds 3b-h was synthesized in the same manner by reaction of the corresponding N-substituted thioureas 1b-h with 3-chloro-acetylaceton 2, respectively.
- 17. General procedure for preparation of compounds **5–41**: To a cooled mixture of 1-(2-(3,4-dichlorophenylamino)-4-methylthiazol-5-yl]ethanone **3a** (3.01 g, 10 mmol), benzaldehyde (1.27 g, 12 mmol) and tetrahydrofuran (40 mL) in ice at about 5 °C, was added dropwise 40% aq potassium hydroxide (5.5 mL) and then the reaction mixture was allowed to reflux until completion (EtOAc/toluene = 2:1, monitored by TLC). It was then poured into icy water containing acetic acid (30 mL) and stood overnight in refrigerator. The precipitated was filtered and washed with H₂O, recrystallized from THF/EtOAc to get pure **5**, yellow-brown solid, 1.93 g (yield 49.6%), mp: 213–215 °C; IR ν_{max} (KBr)/cm⁻¹: 3443, 3287, 3110, 1642, 1608, 1542, 1474. ¹H NMR (400 MHz, CDCl₃, TMS) δ: 7.79 (d, J = 15.2 Hz, 1H, =CH), 7.63–7.19 (m, 8H, Ar–H), 7.16 (d, J = 15.2 Hz, 1H, =CH), 2.75 (s, 3H, CH₃). HRMS (APCl): calcd for C₁₉H₁₄²⁵Cl₂N₂OS+H 389.0282. Found 389.0280. Compounds **6–41** were synthesized in the same manner.